466 research outputs found

    The Persistence of Population III Star Formation

    Full text link
    We present a semi-analytic model of star formation in the early universe, beginning with the first metal-free stars. By employing a completely feedback-limited star formation prescription, stars form at maximum efficiency until the self-consistently calculated feedback processes halt formation. We account for a number of feedback processes including a meta-galactic Lyman-Werner background, supernovae, photoionization, and chemical feedback. Halos are evolved combining mass accretion rates found through abundance matching with our feedback-limited star formation prescription, allowing for a variety of Population III (Pop III) initial mass functions (IMFs). We find that, for a number of models, massive Pop III star formation can continue on until at least z∼20z \sim 20 and potentially past z∼6z \sim 6 at rates of around 10−410^{-4} to 10−510^{-5} M⊙_\odot yr−1^{-1} Mpc−3^{-3}, assuming these stars form in isolation. At this point Lyman-Werner feedback pushes the minimum halo mass for star formation above the atomic cooling threshold, cutting off the formation of massive Pop III stars. We find that, in most models, Pop II and Pop III star formation co-exist over cosmological time-scales, with the total star formation rate density and resulting radiation background strongly dominated by the former before Pop III star formation finally ends. These halos form at most ∼103\sim 10^3 M⊙_\odot of massive Pop III stars during this phase and typically have absolute magnitudes in the range of MAB=−5M_\text{AB} = -5 to −10 -10. We also briefly discuss how future observations from telescopes such as JWST or WFIRST and 21-cm experiments may be able to constrain unknown parameters in our model such as the IMF, star formation prescription, or the physics of massive Pop III stars.Comment: 16 pages, 13 figures, submitted to MNRA

    Hubble Diagram of Gamma-Rays Bursts calibrated with Gurzadyan-Xue Cosmology

    Full text link
    Gamma-ray bursts (GRBs) being the most luminous among known cosmic objects carry an essential potential for cosmological studies if properly used as standard candles. In this paper we test with GRBs the cosmological predictions of the Gurzadyan-Xue (GX) model of dark energy, a novel theory that predicts, without any free parameters, the current vacuum fluctuation energy density close to the value inferred from the SNIa observations. We also compare the GX results with those predicted by the concordance scenario Λ\Lambda-CDM. According to the statistical approach by Schaefer (2007), the use of several empirical relations obtained from GRBs observables, after a consistent calibration for a specific model, enables one to probe current cosmological models. Based on this recently introduced method, we use the 69 GRBs sample collected by Schaefer (2007); and the most recently released SWIFT satellite data (Sakamoto et al. 2007) together with the 41 GRBs sample collected by Rizzuto et al. (2007), which has the more firmly determined redshifts. Both data samples span a distance scale up to redshift about 7. We show that the GX models are compatible with the Hubble diagram of the Schaefer (2007) 69 GRBs sample. Such adjustment is almost identical to the one for the concordance Λ\Lambda-CDM.Comment: 9 pages, 17 figures, 11 tables; Astr. & Astrophys. (in press

    A minimalist feedback-regulated model for galaxy formation during the epoch of reionization

    Get PDF
    Near-infrared surveys have now determined the luminosity functions of galaxies at 6 ≲ z ≲ 8 to impressive precision and identified a number of candidates at even earlier times. Here, we develop a simple analytic model to describe these populations that allows physically motivated extrapolation to earlier times and fainter luminosities. We assume that galaxies grow through accretion on to dark matter haloes, which we model by matching haloes at fixed number density across redshift, and that stellar feedback limits the star formation rate. We allow for a variety of feedback mechanisms, including regulation through supernova energy and momentum from radiation pressure. We show that reasonable choices for the feedback parameters can fit the available galaxy data, which in turn substantially limits the range of plausible extrapolations of the luminosity function to earlier times and fainter luminosities: for example, the global star formation rate declines rapidly (by a factor of ∼20 from z = 6 to 15 in our fiducial model), but the bright galaxies accessible to observations decline even faster (by a factor ≳ 400 over the same range). Our framework helps us develop intuition for the range of expectations permitted by simple models of high-z galaxies that build on our understanding of ‘normal’ galaxy evolution. We also provide predictions for galaxy measurements by future facilities, including James Webb Space Telescope and Wide-Field Infrared Survey Telescope

    The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background

    Get PDF
    The radiation background produced by the 21 cm spin-flip transition of neutral hydrogen at high redshifts can be a pristine probe of fundamental physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible in 21 cm absorption against the cosmic microwave background (CMB), with a strength that depends on the thermal (and ionization) history of the IGM. Here we examine the constraints this background can place on dark matter decay and annihilation, which could heat and ionize the IGM through the production of high-energy particles. Using a simple model for dark matter decay, we show that, if the decay energy is immediately injected into the IGM, the 21 cm background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If all the dark matter is subject to decay, this allows us to constrain dark matter lifetimes <10^{27} sec. Such energy injection rates are much smaller than those typically probed by the CMB power spectra. The expected brightness temperature fluctuations at z~50 are a fraction of a mK and can vary from the standard calculation by up to an order of magnitude, although the difference can be significantly smaller if some of the decay products free stream to lower redshifts. For self-annihilating dark matter, the fluctuation amplitude can differ by a factor <2 from the standard calculation at z~50. Note also that, in contrast to the CMB, the 21 cm probe is sensitive to both the ionization fraction and the IGM temperature, in principle allowing better constraints on the decay process and heating history. We also show that strong IGM heating and ionization can lead to an enhanced H_2 abundance, which may affect the earliest generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure

    Ultraviolet Line Emission from Metals in the Low-Redshift Intergalactic Medium

    Full text link
    We use a high-resolution cosmological simulation that includes hydrodynamics, multiphase star formation, and galactic winds to predict the distribution of metal line emission at z~0 from the intergalactic medium (IGM). We focus on two ultraviolet doublet transitions, OVI 1032,1038 and CIV 1548,1551. Emission from filaments with moderate overdensities is orders of magnitude smaller than the background, but isolated emission from enriched, dense regions with T~10^5-10^5.5 K and characteristic sizes of 50-100 kpc can be detected above the background. We show that the emission from these regions is substantially greater when we use the metallicities predicted by the simulation (which includes enrichment through galactic winds) than when we assume a uniform IGM metallicity. Luminous regions correspond to volumes that have recently been influenced by galactic winds. We also show that the line emission is clustered on scales ~1 h^-1 Mpc. We argue that although these transitions are not effective tracers of the warm-hot intergalactic medium, they do provide a route to study the chemical enrichment of the IGM and the physics of galactic winds.Comment: replaced by version to appear in ApJ (conclusions unchanged, one new figure), 16 pages (emulateapj), 11 figures, version with higher resolution figures available at http://www.tapir.caltech.edu/~sfurlane/metals/coverpage.htm

    Redshifted 21 Centimeter Emission from Minihalos Before Reionization

    Full text link
    Before reionization, the intergalactic medium (IGM) may have been sufficiently cold for low-mass "minihalos" to condense out of the gas and subsequently affect reionization. Previous work has shown that minihalos generate reasonably large 21 cm fluctuations. Here we consider this signal in its proper cosmological context and show that isolating minihalos from the rest of the IGM is extremely difficult. Using the well-known halo model, we compute the power spectrum of 21 cm fluctuations from minihalos and show that the signal decreases rapidly as feedback increases the Jeans mass. We then show that even a small Lyman-alpha background increases the 21 cm fluctuations of the diffuse IGM well beyond those of the minihalos; because the mass fraction in the IGM is much larger, minihalos will lie buried within the IGM signal. The distinctive signatures of non-linear bias and minihalo structure emerge only at much smaller scales, well beyond the resolution of any upcoming instruments. Using simple, but representative, reionization histories, we then show that the required Lyman-alpha background level is most likely achieved at z>15, while minihalos are still rare, so that they are almost always degenerate with the diffuse IGM.Comment: 8 pages, 6 figures, submitted to Ap

    Reionization and the large-scale 21 cm-cosmic microwave background cross correlation

    Full text link
    Of the many probes of reionization, the 21 cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21 cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked toward the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (l~100) and comes almost entirely from large physical scales (k~0.01 Mpc). Since many of the foregrounds and noise that plague low frequency radio observations will not correlate with CMB measurements, the cross correlation might appear to provide a robust diagnostic of the cosmological origin of the 21 cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.Comment: 15 pages, 4 figures, submitted to MNRA

    Efficient Simulations of Early Structure Formation and Reionization

    Full text link
    We present a method to construct semi-numerical ``simulations'', which can efficiently generate realizations of halo distributions and ionization maps at high redshifts. Our procedure combines an excursion-set approach with first-order Lagrangian perturbation theory and operates directly on the linear density and velocity fields. As such, the achievable dynamic range with our algorithm surpasses the current practical limit of N-body codes by orders of magnitude. This is particularly significant in studies of reionization, where the dynamic range is the principal limiting factor. We test our halo-finding and HII bubble-finding algorithms independently against N-body simulations with radiative transfer and obtain excellent agreement. We compute the size distributions of ionized and neutral regions in our maps. We find even larger ionized bubbles than do purely analytic models at the same volume-weighted mean hydrogen neutral fraction. We also generate maps and power spectra of 21-cm brightness temperature fluctuations, which for the first time include corrections due to gas bulk velocities. We find that velocities widen the tails of the temperature distributions and increase small-scale power, though these effects quickly diminish as reionization progresses. We also include some preliminary results from a simulation run with the largest dynamic range to date: a 250 Mpc box that resolves halos with masses M >~ 2.2 x10^8 M_sun. We show that accurately modeling the late stages of reionization requires such large scales. The speed and dynamic range provided by our semi-numerical approach will be extremely useful in the modeling of early structure formation and reionization.Comment: 13 pages, 10 figures; ApJ submitte
    • …
    corecore